PhysLean Documentation

PhysLean.Optics.Polarization.Basic

Polarization #

In this file the real representation is used to develop representations of polarizations such as the polarization ellipse, Stokes parameters and the Poincaré sphere for monochromatic time-harmonic electromagnetic plane waves.

More general definitions that can be applied to a wider range of situations will be shown to be equivalent to the definitions in this file where appropriate.

Monochromatic wave #

noncomputable def Optics.monochromX (k : ClassicalMechanics.WaveVector) (E₀x ω δx : ) :
TimeSpace

x-component of monochromatic time-harmonic wave.

Equations
Instances For
    noncomputable def Optics.monochromY (k : ClassicalMechanics.WaveVector) (E₀y ω δy : ) :
    TimeSpace

    y-component of monochromatic time-harmonic wave.

    Equations
    Instances For

      General form of monochromatic time-harmonic electromagnetic plane wave where the direction of propagation is taken to be EuclideanSpace.single 2 1. E₀x and E₀y are the respective amplitudes, ω is the angular frequency, δx and δy are the respective phases for Ex and Ey.

      Equations
      Instances For
        theorem Optics.harmonicElectromagneticPlaneWave_eq_electricplaneWave {c : } {k : ClassicalMechanics.WaveVector} {E₀x E₀y ω δx δy : } (hc_ge_zero : 0 < c) (hω_ge_zero : 0 < ω) (hk : k = EuclideanSpace.single 2 (ω / c)) :
        harmonicElectromagneticPlaneWave k E₀x E₀y ω δx δy hk = Electromagnetism.electricPlaneWave (fun (p : ) => (E₀x * Real.cos (-(ω / c) * p + δx)) EuclideanSpace.single 0 1 + (E₀y * Real.cos (-(ω / c) * p + δy)) EuclideanSpace.single 1 1) c (k.toDirection )

        The transverse harmonic planewave representation is equivalent to the general electric field planewave expression with ‖k‖ = ω/c.

        Polarization ellipse #

        theorem Optics.eq_monochromX {k : ClassicalMechanics.WaveVector} {E₀x τ ω δx : } {t : Time} {r : Space} (h : τ = ω * t - inner k r) :
        monochromX k E₀x ω δx t r = E₀x * Real.cos (τ + δx)

        monochromX is equivalent to E₀x * cos (τ + δx) with τ = ω * t - inner ℝ k r.

        theorem Optics.eq_monochromY {k : ClassicalMechanics.WaveVector} {E₀y τ ω δy : } {t : Time} {r : Space} (h : τ = ω * t - inner k r) :
        monochromY k E₀y ω δy t r = E₀y * Real.cos (τ + δy)

        monochromY is equivalent to E₀y * cos (τ + δy) with τ = ω * t - inner ℝ k r.

        theorem Optics.polarizationEllipse {k : ClassicalMechanics.WaveVector} {E₀x E₀y τ ω δx δy : } {t : Time} {r : Space} (hx : E₀x 0) (hy : E₀y 0) (h : τ = ω * t - inner k r) :
        (monochromX k E₀x ω δx t r / E₀x) ^ 2 + (monochromY k E₀y ω δy t r / E₀y) ^ 2 - 2 * (monochromX k E₀x ω δx t r / E₀x) * (monochromY k E₀y ω δy t r / E₀y) * Real.cos (δy - δx) = Real.sin (δy - δx) ^ 2

        The locus of the electric field vector of an monochromatic time-harmonic electromagnetic plane wave is an ellipse.