Test functions #
Definition of test function, smooth and compactly supported function, and theorems about them.
structure
IsTestFunction
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{U : Type u_2}
[NormedAddCommGroup U]
[NormedSpace ℝ U]
(f : X → U)
:
A test function is a smooth function with compact support.
- supp : HasCompactSupport f
Instances For
theorem
IsTestFunction.integrable
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{U : Type u_2}
[NormedAddCommGroup U]
[NormedSpace ℝ U]
[MeasurableSpace X]
[OpensMeasurableSpace X]
{f : X → U}
(hf : IsTestFunction f)
(μ : MeasureTheory.Measure X)
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
:
theorem
IsTestFunction.differentiable
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{U : Type u_2}
[NormedAddCommGroup U]
[NormedSpace ℝ U]
{f : X → U}
(hf : IsTestFunction f)
:
theorem
IsTestFunction.contDiff
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{U : Type u_2}
[NormedAddCommGroup U]
[NormedSpace ℝ U]
{f : X → U}
(hf : IsTestFunction f)
:
theorem
IsTestFunction.deriv
{U : Type u_1}
[NormedAddCommGroup U]
[NormedSpace ℝ U]
{f : ℝ → U}
(hf : IsTestFunction f)
:
IsTestFunction fun (x : ℝ) => _root_.deriv f x
theorem
IsTestFunction.zero
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{U : Type u_2}
[NormedAddCommGroup U]
[NormedSpace ℝ U]
:
IsTestFunction fun (x : X) => 0
theorem
IsTestFunction.add
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{U : Type u_2}
[NormedAddCommGroup U]
[NormedSpace ℝ U]
{f g : X → U}
(hf : IsTestFunction f)
(hg : IsTestFunction g)
:
IsTestFunction fun (x : X) => f x + g x
theorem
IsTestFunction.neg
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{U : Type u_2}
[NormedAddCommGroup U]
[NormedSpace ℝ U]
{f : X → U}
(hf : IsTestFunction f)
:
IsTestFunction fun (x : X) => -f x
theorem
IsTestFunction.sub
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{U : Type u_2}
[NormedAddCommGroup U]
[NormedSpace ℝ U]
{f g : X → U}
(hf : IsTestFunction f)
(hg : IsTestFunction g)
:
IsTestFunction (f - g)
theorem
IsTestFunction.mul
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{f g : X → ℝ}
(hf : IsTestFunction f)
(hg : IsTestFunction g)
:
IsTestFunction fun (x : X) => f x * g x
theorem
IsTestFunction.inner
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{V : Type u_2}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[InnerProductSpace' ℝ V]
{f g : X → V}
(hf : IsTestFunction f)
(hg : IsTestFunction g)
:
IsTestFunction fun (x : X) => Inner.inner ℝ (f x) (g x)
theorem
IsTestFunction.mul_left
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{f g : X → ℝ}
(hf : ContDiff ℝ (↑⊤) f)
(hg : IsTestFunction g)
:
IsTestFunction fun (x : X) => f x * g x
theorem
IsTestFunction.mul_right
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{f g : X → ℝ}
(hf : IsTestFunction f)
(hg : ContDiff ℝ (↑⊤) g)
:
IsTestFunction fun (x : X) => f x * g x
theorem
IsTestFunction.smul_left
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{U : Type u_2}
[NormedAddCommGroup U]
[NormedSpace ℝ U]
{f : X → ℝ}
{g : X → U}
(hf : ContDiff ℝ (↑⊤) f)
(hg : IsTestFunction g)
:
IsTestFunction fun (x : X) => f x • g x
theorem
IsTestFunction.smul_right
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{U : Type u_2}
[NormedAddCommGroup U]
[NormedSpace ℝ U]
{f : X → ℝ}
{g : X → U}
(hf : IsTestFunction f)
(hg : ContDiff ℝ (↑⊤) g)
:
IsTestFunction fun (x : X) => f x • g x