PhysLean Documentation

PhysLean.Mathematics.VariationalCalculus.IsTestFunction

Test functions #

Definition of test function, smooth and compactly supported function, and theorems about them.

structure IsTestFunction {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] (f : XU) :

A test function is a smooth function with compact support.

Instances For

    A compactly supported continuous map from a test function.

    Equations
    Instances For
      theorem IsTestFunction.contDiff {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f : XU} (hf : IsTestFunction f) :
      theorem IsTestFunction.comp_left {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_3} [NormedAddCommGroup U] [NormedSpace U] {V : Type u_2} [NormedAddCommGroup V] [NormedSpace V] {f : XV} (hf : IsTestFunction f) {g : VU} (hg1 : g 0 = 0) (hg : ContDiff (↑) g) :
      IsTestFunction fun (x : X) => g (f x)
      theorem IsTestFunction.pi {X : Type u_2} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_3} [NormedAddCommGroup U] [NormedSpace U] {ι : Type u_1} [Fintype ι] {φ : XιU} ( : ∀ (i : ι), IsTestFunction fun (x : X) => φ x i) :
      IsTestFunction fun (x : X) (i : ι) => φ x i
      theorem IsTestFunction.space_component {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {d : } {i : Fin d} {φ : XSpace d} ( : IsTestFunction φ) :
      IsTestFunction fun (x : X) => φ x i
      theorem IsTestFunction.prodMk {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {V : Type u_3} [NormedAddCommGroup V] [NormedSpace V] {f : XU} {g : XV} (hf : IsTestFunction f) (hg : IsTestFunction g) :
      IsTestFunction fun (x : X) => (f x, g x)
      theorem IsTestFunction.prod_fst {X : Type u_3} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_1} [NormedAddCommGroup U] [NormedSpace U] {V : Type u_2} [NormedAddCommGroup V] [NormedSpace V] {f : XU × V} (hf : IsTestFunction f) :
      IsTestFunction fun (x : X) => (f x).1
      theorem IsTestFunction.prod_snd {X : Type u_3} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_1} [NormedAddCommGroup U] [NormedSpace U] {V : Type u_2} [NormedAddCommGroup V] [NormedSpace V] {f : XU × V} (hf : IsTestFunction f) :
      IsTestFunction fun (x : X) => (f x).2
      theorem IsTestFunction.neg {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f : XU} (hf : IsTestFunction f) :
      IsTestFunction fun (x : X) => -f x
      theorem IsTestFunction.add {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f g : XU} (hf : IsTestFunction f) (hg : IsTestFunction g) :
      IsTestFunction fun (x : X) => f x + g x
      theorem IsTestFunction.sub {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f g : XU} (hf : IsTestFunction f) (hg : IsTestFunction g) :
      IsTestFunction fun (x : X) => f x - g x
      theorem IsTestFunction.mul {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {f g : X} (hf : IsTestFunction f) (hg : IsTestFunction g) :
      IsTestFunction fun (x : X) => f x * g x
      theorem IsTestFunction.mul_left {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {f g : X} (hf : ContDiff (↑) f) (hg : IsTestFunction g) :
      IsTestFunction fun (x : X) => f x * g x
      theorem IsTestFunction.mul_right {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {f g : X} (hf : IsTestFunction f) (hg : ContDiff (↑) g) :
      IsTestFunction fun (x : X) => f x * g x
      theorem IsTestFunction.inner {X : Type u_2} [NormedAddCommGroup X] [NormedSpace X] {V : Type u_1} [NormedAddCommGroup V] [NormedSpace V] [InnerProductSpace' V] {f g : XV} (hf : IsTestFunction f) (hg : IsTestFunction g) :
      IsTestFunction fun (x : X) => Inner.inner (f x) (g x)
      theorem IsTestFunction.inner_left {X : Type u_2} [NormedAddCommGroup X] [NormedSpace X] {V : Type u_1} [NormedAddCommGroup V] [NormedSpace V] [InnerProductSpace' V] {f g : XV} (hf : ContDiff (↑) f) (hg : IsTestFunction g) :
      IsTestFunction fun (x : X) => Inner.inner (f x) (g x)
      theorem IsTestFunction.inner_right {X : Type u_2} [NormedAddCommGroup X] [NormedSpace X] {V : Type u_1} [NormedAddCommGroup V] [NormedSpace V] [InnerProductSpace' V] {f g : XV} (hf : IsTestFunction f) (hg : ContDiff (↑) g) :
      IsTestFunction fun (x : X) => Inner.inner (f x) (g x)
      theorem IsTestFunction.smul {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f : X} {g : XU} (hf : IsTestFunction f) (hg : IsTestFunction g) :
      IsTestFunction fun (x : X) => f x g x
      theorem IsTestFunction.smul_left {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f : X} {g : XU} (hf : ContDiff (↑) f) (hg : IsTestFunction g) :
      IsTestFunction fun (x : X) => f x g x
      theorem IsTestFunction.smul_right {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f : X} {g : XU} (hf : IsTestFunction f) (hg : ContDiff (↑) g) :
      IsTestFunction fun (x : X) => f x g x
      theorem IsTestFunction.sum {X : Type u_2} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_3} [NormedAddCommGroup U] [NormedSpace U] {ι : Type u_1} [Fintype ι] {φ : XιU} { : ∀ (i : ι), IsTestFunction fun (x : X) => φ x i} :
      IsTestFunction fun (x : X) => i : ι, φ x i
      theorem IsTestFunction.coord {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {d : } {φ : XSpace d} ( : IsTestFunction φ) (i : Fin d) :
      IsTestFunction fun (x : X) => Space.coord i (φ x)
      theorem IsTestFunction.linearMap_comp {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_3} [NormedAddCommGroup U] [NormedSpace U] {V : Type u_2} [NormedAddCommGroup V] [NormedSpace V] {f : XV} (hf : IsTestFunction f) {g : V →ₗ[] U} (hg : ContDiff g) :
      IsTestFunction fun (x : X) => g (f x)
      theorem IsTestFunction.family_linearMap_comp {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_3} [NormedAddCommGroup U] [NormedSpace U] {V : Type u_2} [NormedAddCommGroup V] [NormedSpace V] {f : XV} (hf : IsTestFunction f) {g : XV →L[] U} (hg : ContDiff (↑) g) :
      IsTestFunction fun (x : X) => (g x) (f x)
      theorem IsTestFunction.deriv {U : Type u_1} [NormedAddCommGroup U] [NormedSpace U] {f : U} (hf : IsTestFunction f) :
      theorem IsTestFunction.of_fderiv {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f : XU} (hf : IsTestFunction f) :
      IsTestFunction fun (x : X) => fderiv f x
      theorem IsTestFunction.fderiv_apply {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f : XU} (hf : IsTestFunction f) (δx : X) :
      IsTestFunction fun (x : X) => (fderiv f x) δx
      theorem IsTestFunction.of_div {d : } (φ : Space dSpace d) ( : IsTestFunction φ) :