PhysLean Documentation

PhysLean.Mathematics.VariationalCalculus.IsTestFunction

Test functions #

Definition of test function, smooth and compactly supported function, and theorems about them.

structure IsTestFunction {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] (f : XU) :

A test function is a smooth function with compact support.

Instances For
    theorem IsTestFunction.contDiff {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f : XU} (hf : IsTestFunction f) :
    theorem IsTestFunction.deriv {U : Type u_1} [NormedAddCommGroup U] [NormedSpace U] {f : U} (hf : IsTestFunction f) :
    theorem IsTestFunction.add {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f g : XU} (hf : IsTestFunction f) (hg : IsTestFunction g) :
    IsTestFunction fun (x : X) => f x + g x
    theorem IsTestFunction.neg {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f : XU} (hf : IsTestFunction f) :
    IsTestFunction fun (x : X) => -f x
    theorem IsTestFunction.sub {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f g : XU} (hf : IsTestFunction f) (hg : IsTestFunction g) :
    theorem IsTestFunction.mul {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {f g : X} (hf : IsTestFunction f) (hg : IsTestFunction g) :
    IsTestFunction fun (x : X) => f x * g x
    theorem IsTestFunction.inner {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {V : Type u_2} [NormedAddCommGroup V] [NormedSpace V] [InnerProductSpace' V] {f g : XV} (hf : IsTestFunction f) (hg : IsTestFunction g) :
    IsTestFunction fun (x : X) => Inner.inner (f x) (g x)
    theorem IsTestFunction.mul_left {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {f g : X} (hf : ContDiff (↑) f) (hg : IsTestFunction g) :
    IsTestFunction fun (x : X) => f x * g x
    theorem IsTestFunction.mul_right {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {f g : X} (hf : IsTestFunction f) (hg : ContDiff (↑) g) :
    IsTestFunction fun (x : X) => f x * g x
    theorem IsTestFunction.smul_left {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f : X} {g : XU} (hf : ContDiff (↑) f) (hg : IsTestFunction g) :
    IsTestFunction fun (x : X) => f x g x
    theorem IsTestFunction.smul_right {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {U : Type u_2} [NormedAddCommGroup U] [NormedSpace U] {f : X} {g : XU} (hf : IsTestFunction f) (hg : ContDiff (↑) g) :
    IsTestFunction fun (x : X) => f x g x