Generalization of calculus results to InnerProductSpace'
#
noncomputable def
fderivInnerCLM'
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[InnerProductSpace' ℝ E]
(p : E × E)
:
Derivative of the inner product for the instance InnerProductSpace'
.
Equations
- fderivInnerCLM' p = ⋯.deriv p
Instances For
theorem
HasFDerivAt.inner'
{E : Type u_2}
{F : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[InnerProductSpace' ℝ F]
{x : E}
{f g : E → F}
{f' g' : E →L[ℝ] F}
(hf : HasFDerivAt f f' x)
(hg : HasFDerivAt g g' x)
:
HasFDerivAt (fun (t : E) => Inner.inner ℝ (f t) (g t)) ((fderivInnerCLM' (f x, g x)).comp (f'.prod g')) x
theorem
fderiv_inner_apply'
{E : Type u_2}
{F : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[InnerProductSpace' ℝ F]
{f g : E → F}
{x : E}
(hf : DifferentiableAt ℝ f x)
(hg : DifferentiableAt ℝ g x)
(y : E)
:
theorem
deriv_inner_apply'
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[InnerProductSpace' ℝ F]
{f g : ℝ → F}
{x : ℝ}
(hf : DifferentiableAt ℝ f x)
(hg : DifferentiableAt ℝ g x)
:
theorem
DifferentiableAt.inner'
{E : Type u_2}
{F : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[InnerProductSpace' ℝ F]
{f g : E → F}
{x : E}
(hf : DifferentiableAt ℝ f x)
(hg : DifferentiableAt ℝ g x)
:
DifferentiableAt ℝ (fun (x : E) => Inner.inner ℝ (f x) (g x)) x