PhysLean Documentation

PhysLean.Mathematics.InnerProductSpace.Calculus

Generalization of calculus results to InnerProductSpace' #

noncomputable def fderivInnerCLM' {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [InnerProductSpace' E] (p : E × E) :

Derivative of the inner product for the instance InnerProductSpace'.

Equations
Instances For
    theorem HasFDerivAt.inner' {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] [InnerProductSpace' F] {x : E} {f g : EF} {f' g' : E →L[] F} (hf : HasFDerivAt f f' x) (hg : HasFDerivAt g g' x) :
    HasFDerivAt (fun (t : E) => Inner.inner (f t) (g t)) ((fderivInnerCLM' (f x, g x)).comp (f'.prod g')) x
    theorem fderiv_inner_apply' {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] [InnerProductSpace' F] {f g : EF} {x : E} (hf : DifferentiableAt f x) (hg : DifferentiableAt g x) (y : E) :
    (fderiv (fun (t : E) => inner (f t) (g t)) x) y = inner (f x) ((fderiv g x) y) + inner ((fderiv f x) y) (g x)
    theorem deriv_inner_apply' {F : Type u_3} [NormedAddCommGroup F] [NormedSpace F] [InnerProductSpace' F] {f g : F} {x : } (hf : DifferentiableAt f x) (hg : DifferentiableAt g x) :
    deriv (fun (t : ) => inner (f t) (g t)) x = inner (f x) (deriv g x) + inner (deriv f x) (g x)
    theorem DifferentiableAt.inner' {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] [InnerProductSpace' F] {f g : EF} {x : E} (hf : DifferentiableAt f x) (hg : DifferentiableAt g x) :
    DifferentiableAt (fun (x : E) => Inner.inner (f x) (g x)) x