PhysLean Documentation

PhysLean.Mathematics.Geometry.Metric.PseudoRiemannian.Defs

Pseudo-Riemannian Metrics on Smooth Manifolds #

This file formalizes pseudo-Riemannian metrics on smooth manifolds and establishes their basic properties.

A pseudo-Riemannian metric equips a manifold with a smoothly varying, non-degenerate, symmetric bilinear form of constant index on each tangent space, generalizing the concept of an inner product space to curved spaces. The index here refers to QuadraticForm.negDim, the dimension of a maximal negative definite subspace.

Main Definitions #

This formalization adopts a direct approach, defining the metric as a family of bilinear forms on tangent spaces, varying smoothly over the manifold. This pragmatic choice allows for foundational development while acknowledging that a more abstract ideal would involve defining metrics as sections of a tensor bundle (e.g., Hom(TM ⊗ TM, ℝ) or TM →L[ℝ] TM →L[ℝ] ℝ.

Reference #

Negative Index #

noncomputable def QuadraticForm.negDim {E : Type u_2} [AddCommGroup E] [Module E] [FiniteDimensional E] (q : QuadraticForm E) :

The negative dimension (often called the index or negative index of inertia) of a quadratic form q on a finite-dimensional real vector space.

This value is defined by diagonalizing the quadratic form into an equivalent QuadraticMap.weightedSumSquares ℝ s, where s : Fin (finrank ℝ E) → SignType assigns 1, 0, or -1 to each component. The negDim is the count of components i for which s i = SignType.neg.

By Sylvester's Law of Inertia, this count is an invariant of the quadratic form. Geometrically, negDim q represents the dimension of any maximal vector subspace on which q is negative definite. This corresponds to O'Neill's Definition 18 (p. 47) of the index ν of a symmetric bilinear form b on V, which is "the largest integer that is the dimension of a subspace W ⊂ V on which b|W is negative definite."

Equations
Instances For
    theorem QuadraticForm.QuadraticMap.weightedSumSquares_basis_vector {E : Type u_2} [AddCommGroup E] [Module E] {weights : Fin (Module.finrank E)} {i : Fin (Module.finrank E)} (v : Fin (Module.finrank E)) (hv : ∀ (j : Fin (Module.finrank E)), v j = if j = i then 1 else 0) :
    (QuadraticMap.weightedSumSquares weights) v = weights i

    For a standard basis vector in a weighted sum of squares, only one term in the sum is nonzero.

    theorem QuadraticForm.neg_weight_implies_neg_value {E : Type u_2} [AddCommGroup E] [Module E] {q : QuadraticForm E} {w : Fin (Module.finrank E)SignType} (h_equiv : QuadraticMap.Equivalent q (QuadraticMap.weightedSumSquares fun (i : Fin (Module.finrank E)) => (w i))) {i : Fin (Module.finrank E)} (hi : w i = SignType.neg) :
    ∃ (v : E), v 0 q v < 0

    When a quadratic form is equivalent to a weighted sum of squares, negative weights correspond to vectors where the form takes negative values. This is a concrete realization of a 1-dimensional negative definite subspace, contributing to O'Neill's index ν (Definition 18, p. 47).

    A positive definite quadratic form cannot have any negative weights in its diagonal representation. A quadratic form q derived from a bilinear form b is positive definite if b(v,v) > 0 for v ≠ 0 (O'Neill, Definition 17 (1), p. 46). The existence of a negative weight would imply q(v) < 0 for some v ≠ 0, a contradiction.

    For a positive definite quadratic form, the negative dimension (index) is zero. O'Neill states (p. 47) that "ν = 0 if and only if b is positive semidefinite." Since positive definite implies positive semidefinite (Definitions 17 (1) and (2), p. 46), a positive definite form must have index ν = 0.

    Pseudo-Riemannian Metric #

    structure PseudoRiemannianMetric (E : Type v) (H M : Type w) (n : WithTop ℕ∞) [inst_norm_grp_E : NormedAddCommGroup E] [inst_norm_sp_E : NormedSpace E] [inst_top_H : TopologicalSpace H] [inst_top_M : TopologicalSpace M] [inst_chart_M : ChartedSpace H M] [inst_chart_E : ChartedSpace H E] (I : ModelWithCorners E H) [inst_mani : IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] :
    Type (max u v w)

    A pseudo-Riemannian metric of smoothness class C^n on a manifold M modelled on (E, H) with model I. This structure defines a smoothly varying, non-degenerate, symmetric, continuous bilinear form gₓ of constant negative dimension on the tangent space TₓM at each point x. Requires M to be C^{n+1} smooth. This structure formalizes O'Neill's Definition 3.1 (p. 54) of a metric tensor g on M as a "symmetric non-degenerate (0,2) tensor field on M of constant index." Each gₓ is a scalar product (O'Neill, Definition 20, p. 47) on TₓM.

    Instances For
      theorem PseudoRiemannianMetric.ext {E : Type v} {H M : Type w} {n : WithTop ℕ∞} {inst_norm_grp_E : NormedAddCommGroup E} {inst_norm_sp_E : NormedSpace E} {inst_top_H : TopologicalSpace H} {inst_top_M : TopologicalSpace M} {inst_chart_M : ChartedSpace H M} {inst_chart_E : ChartedSpace H E} {I : ModelWithCorners E H} {inst_mani : IsManifold I (n + 1) M} {inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)} {x y : PseudoRiemannianMetric E H M n I} (val : x.val = y.val) :
      x = y
      theorem PseudoRiemannianMetric.ext_iff {E : Type v} {H M : Type w} {n : WithTop ℕ∞} {inst_norm_grp_E : NormedAddCommGroup E} {inst_norm_sp_E : NormedSpace E} {inst_top_H : TopologicalSpace H} {inst_top_M : TopologicalSpace M} {inst_chart_M : ChartedSpace H M} {inst_chart_E : ChartedSpace H E} {I : ModelWithCorners E H} {inst_mani : IsManifold I (n + 1) M} {inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)} {x y : PseudoRiemannianMetric E H M n I} :
      x = y x.val = y.val
      def PseudoRiemannianMetric.toBilinForm {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :

      Given a pseudo-Riemannian metric g on manifold M and a point x : M, this function constructs a bilinear form on the tangent space at x. For tangent vectors u v : T_x M, the bilinear form is given by: g_x(u, v) = g(x)(u, v)

      Equations
      Instances For
        @[reducible, inline]
        abbrev PseudoRiemannianMetric.toQuadraticForm {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :

        Convert a pseudo-Riemannian metric at a point x to a quadratic form v ↦ gₓ(v, v).

        Equations
        Instances For
          instance PseudoRiemannianMetric.coeFunInst {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] :

          Coercion from PseudoRiemannianMetric to its function representation.

          Equations
          @[simp]
          theorem PseudoRiemannianMetric.toBilinForm_apply {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (v w : TangentSpace I x) :
          ((g.toBilinForm x) v) w = ((g.val x) v) w
          @[simp]
          theorem PseudoRiemannianMetric.toQuadraticForm_apply {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (v : TangentSpace I x) :
          (g.toQuadraticForm x) v = ((g.val x) v) v
          @[simp]
          theorem PseudoRiemannianMetric.toBilinForm_isSymm {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :
          @[simp]
          theorem PseudoRiemannianMetric.toBilinForm_nondegenerate {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :
          def PseudoRiemannianMetric.inner {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (v w : TangentSpace I x) :

          The inner product (or scalar product) on the tangent space at point x induced by the pseudo-Riemannian metric g. This is gₓ(v, w).

          Equations
          Instances For
            @[simp]
            theorem PseudoRiemannianMetric.inner_apply {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (v w : TangentSpace I x) :
            g.inner x v w = ((g.val x) v) w

            Flat #

            def PseudoRiemannianMetric.flat {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :

            The "musical" isomorphism (index lowering) v ↦ gₓ(v, -). The non-degeneracy of gₓ (O'Neill, Def 17 (3), p. 46) means its matrix representation is invertible (O'Neill, Lemma 19, p. 47), and that this map is an isomorphism from TₓM to its dual.

            Equations
            Instances For
              @[simp]
              theorem PseudoRiemannianMetric.flat_apply {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (v w : TangentSpace I x) :
              ((g.flat x) v) w = ((g.val x) v) w
              def PseudoRiemannianMetric.flatL {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :

              The musical isomorphism as a continuous linear map.

              Equations
              Instances For
                @[simp]
                theorem PseudoRiemannianMetric.flatL_apply {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (v w : TangentSpace I x) :
                ((g.flatL x) v) w = ((g.val x) v) w
                @[simp]
                theorem PseudoRiemannianMetric.flat_inj {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :
                @[simp]
                theorem PseudoRiemannianMetric.flatL_inj {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :
                @[simp]
                theorem PseudoRiemannianMetric.flatL_surj {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :

                The "musical" isomorphism (index lowering) from TₓM to its dual, as a continuous linear equivalence. This equivalence is a direct result of gₓ being a non-degenerate bilinear form (O'Neill, Def 17(3), p. 46; Lemma 19, p. 47).

                Equations
                Instances For
                  theorem PseudoRiemannianMetric.coe_flatEquiv {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :
                  (g.flatEquiv x) = (g.flatL x)
                  @[simp]
                  theorem PseudoRiemannianMetric.flatEquiv_apply {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (v w : TangentSpace I x) :
                  ((g.flatEquiv x) v) w = ((g.val x) v) w

                  Sharp #

                  The "musical" isomorphism (index raising) from the dual of TₓM to TₓM. This is the inverse of flatEquiv g x, and its existence as an isomorphism is guaranteed by the non-degeneracy of gₓ (O'Neill, Lemma 19, p. 47).

                  Equations
                  Instances For
                    def PseudoRiemannianMetric.sharpL {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :

                    The index raising map sharp as a continuous linear map.

                    Equations
                    Instances For
                      theorem PseudoRiemannianMetric.sharpL_eq_toContinuousLinearMap {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :
                      g.sharpL x = (g.sharpEquiv x)
                      theorem PseudoRiemannianMetric.coe_sharpEquiv {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :
                      (g.sharpEquiv x) = g.sharpL x
                      noncomputable def PseudoRiemannianMetric.sharp {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :

                      The index raising map sharp as a linear map.

                      Equations
                      Instances For
                        @[simp]
                        theorem PseudoRiemannianMetric.sharpL_apply_flatL {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (v : TangentSpace I x) :
                        (g.sharpL x) ((g.flatL x) v) = v
                        @[simp]
                        theorem PseudoRiemannianMetric.flatL_apply_sharpL {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (ω : TangentSpace I x →L[] ) :
                        (g.flatL x) ((g.sharpL x) ω) = ω
                        @[simp]
                        theorem PseudoRiemannianMetric.flat_sharp_apply {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (ω : TangentSpace I x →L[] ) :
                        (g.flat x) ((g.sharp x) ω) = ω

                        Applying sharp then flat recovers the original covector.

                        @[simp]
                        theorem PseudoRiemannianMetric.sharp_flat_apply {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (v : TangentSpace I x) :
                        (g.sharp x) ((g.flat x) v) = v
                        @[simp]
                        theorem PseudoRiemannianMetric.apply_sharp_sharp {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (ω₁ ω₂ : TangentSpace I x →L[] ) :
                        ((g.val x) ((g.sharpL x) ω₁)) ((g.sharpL x) ω₂) = ω₁ ((g.sharpL x) ω₂)

                        The metric evaluated at sharp ω₁ and sharp ω₂.

                        theorem PseudoRiemannianMetric.apply_vec_sharp {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (v : TangentSpace I x) (ω : TangentSpace I x →L[] ) :
                        ((g.val x) v) ((g.sharpL x) ω) = ω v

                        The metric evaluated at v and sharp ω.

                        Cotangent #

                        noncomputable def PseudoRiemannianMetric.cotangentMetricVal {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (ω₁ ω₂ : TangentSpace I x →L[] ) :

                        The value of the induced metric on the cotangent space at point x.

                        Equations
                        Instances For
                          @[simp]
                          theorem PseudoRiemannianMetric.cotangentMetricVal_eq_apply_sharp {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (ω₁ ω₂ : TangentSpace I x →L[] ) :
                          g.cotangentMetricVal x ω₁ ω₂ = ω₁ ((g.sharpL x) ω₂)
                          theorem PseudoRiemannianMetric.cotangentMetricVal_symm {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (ω₁ ω₂ : TangentSpace I x →L[] ) :
                          g.cotangentMetricVal x ω₁ ω₂ = g.cotangentMetricVal x ω₂ ω₁
                          noncomputable def PseudoRiemannianMetric.cotangentToBilinForm {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :

                          The induced metric on the cotangent space at point x as a bilinear form. For covectors ω₁ and ω₂, this gives g(ω₁^#, ω₂^#), where ω^# is the "sharp" musical isomorphism raising indices.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            noncomputable def PseudoRiemannianMetric.cotangentToQuadraticForm {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) :

                            The cometric on the cotangent space T_x*M at x, expressed as a quadratic form. It is induced by the pseudo-Riemannian metric on the tangent space T_xM.

                            Equations
                            Instances For
                              @[simp]
                              theorem PseudoRiemannianMetric.cotangentToBilinForm_apply {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (ω₁ ω₂ : TangentSpace I x →L[] ) :
                              ((g.cotangentToBilinForm x) ω₁) ω₂ = g.cotangentMetricVal x ω₁ ω₂
                              @[simp]
                              @[simp]
                              theorem PseudoRiemannianMetric.cotangentMetricVal_nondegenerate {E : Type v} {H M : Type w} {n : WithTop ℕ∞} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [ChartedSpace H E] {I : ModelWithCorners E H} [IsManifold I (n + 1) M] [inst_tangent_findim : ∀ (x : M), FiniteDimensional (TangentSpace I x)] (g : PseudoRiemannianMetric E H M n I) (x : M) (ω : TangentSpace I x →L[] ) (h : ∀ (v : TangentSpace I x →L[] ), g.cotangentMetricVal x ω v = 0) :
                              ω = 0

                              The cotangent metric is non-degenerate: if cotangentMetricVal g x ω v = 0 for all v, then ω = 0.