Classical vector calculus properties #
Vector calculus properties under classical space and time derivatives.
theorem
ClassicalMechanics.dt_distrib
{u : Fin 3}
{x dx1 : Space}
{t : Time}
{v : Fin 3}
{dx2 : Space}
(f : Time → Space → EuclideanSpace ℝ (Fin 3))
:
(fderiv ℝ (fun (t : Time) => (fderiv ℝ (fun (x : Space) => f t x u) x) dx1) t - fderiv ℝ (fun (t : Time) => (fderiv ℝ (fun (x : Space) => f t x v) x) dx2) t)
1 = (fderiv ℝ (fun (t : Time) => (fderiv ℝ (fun (x : Space) => f t x u) x) dx1) t) 1 - (fderiv ℝ (fun (t : Time) => (fderiv ℝ (fun (x : Space) => f t x v) x) dx2) t) 1
theorem
ClassicalMechanics.differentiableAt_fderiv_coord_single
{u : Fin 3}
{x : Space}
{v : Fin 3}
{t : Time}
(ft : Time → Space → EuclideanSpace ℝ (Fin 3))
(hf : ContDiff ℝ 2 ↿ft)
:
DifferentiableAt ℝ (fun (t : Time) => (fderiv ℝ (fun (x : Space) => ft t x u) x) (EuclideanSpace.single v 1)) t
theorem
ClassicalMechanics.time_deriv_curl_commute
(fₜ : Time → Space → EuclideanSpace ℝ (Fin 3))
(t : Time)
(x : Space)
(hf : ContDiff ℝ 2 ↿fₜ)
:
Time.deriv (fun (t : Time) => Space.curl (fₜ t) x) t = Space.curl (fun (x : Space) => Time.deriv (fun (t : Time) => fₜ t x) t) x
Curl and time derivative commute.
Cross product in EuclideanSpace ℝ (Fin 3)
. Uses ⨯
which is typed using \X
or
\vectorproduct
or \crossproduct
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ClassicalMechanics.fderiv_cross_commute
{u : ℝ}
{s : Space}
{f : ℝ → EuclideanSpace ℝ (Fin 3)}
(hf : Differentiable ℝ f)
:
(fun (a b : WithLp 2 (Fin 3 → ℝ)) =>
(WithLp.equiv 2 (Fin 3 → ℝ)).symm
((crossProduct ((WithLp.equiv 2 (Fin 3 → ℝ)) a)) ((WithLp.equiv 2 (Fin 3 → ℝ)) b)))
s ((fderiv ℝ (fun (u : ℝ) => f u) u) 1) = (fderiv ℝ
(fun (u : ℝ) =>
(fun (a b : WithLp 2 (Fin 3 → ℝ)) =>
(WithLp.equiv 2 (Fin 3 → ℝ)).symm
((crossProduct ((WithLp.equiv 2 (Fin 3 → ℝ)) a)) ((WithLp.equiv 2 (Fin 3 → ℝ)) b)))
s (f u))
u)
1
Cross product and fderiv commute.
theorem
ClassicalMechanics.time_deriv_cross_commute
{t : Time}
{s : Space}
{f : Time → EuclideanSpace ℝ (Fin 3)}
(hf : Differentiable ℝ f)
:
(fun (a b : WithLp 2 (Fin 3 → ℝ)) =>
(WithLp.equiv 2 (Fin 3 → ℝ)).symm
((crossProduct ((WithLp.equiv 2 (Fin 3 → ℝ)) a)) ((WithLp.equiv 2 (Fin 3 → ℝ)) b)))
s (Time.deriv (fun (t : Time) => f t) t) = Time.deriv
(fun (t : Time) =>
(fun (a b : WithLp 2 (Fin 3 → ℝ)) =>
(WithLp.equiv 2 (Fin 3 → ℝ)).symm
((crossProduct ((WithLp.equiv 2 (Fin 3 → ℝ)) a)) ((WithLp.equiv 2 (Fin 3 → ℝ)) b)))
s (f t))
t
Cross product and time derivative commute.
theorem
ClassicalMechanics.inner_cross_self
(v w : EuclideanSpace ℝ (Fin 3))
:
inner ℝ v
((fun (a b : WithLp 2 (Fin 3 → ℝ)) =>
(WithLp.equiv 2 (Fin 3 → ℝ)).symm
((crossProduct ((WithLp.equiv 2 (Fin 3 → ℝ)) a)) ((WithLp.equiv 2 (Fin 3 → ℝ)) b)))
w v) = 0
theorem
ClassicalMechanics.inner_self_cross
(v w : EuclideanSpace ℝ (Fin 3))
:
inner ℝ v
((fun (a b : WithLp 2 (Fin 3 → ℝ)) =>
(WithLp.equiv 2 (Fin 3 → ℝ)).symm
((crossProduct ((WithLp.equiv 2 (Fin 3 → ℝ)) a)) ((WithLp.equiv 2 (Fin 3 → ℝ)) b)))
v w) = 0