General auxiliary lemmas #
theorem
fderiv_pi'
{𝕜 : Type u_3}
[NontriviallyNormedField 𝕜]
{X : Type u_4}
[NormedAddCommGroup X]
[NormedSpace 𝕜 X]
{ι : Type u_1}
[Fintype ι]
{Y' : ι → Type u_2}
[(i : ι) → NormedAddCommGroup (Y' i)]
[(i : ι) → NormedSpace 𝕜 (Y' i)]
{Φ : X → (i : ι) → Y' i}
{x : X}
(h : DifferentiableAt 𝕜 Φ x)
:
theorem
ContDiff.differentiable_fderiv
{𝕜 : Type u_3}
[NontriviallyNormedField 𝕜]
{X : Type u_4}
[NormedAddCommGroup X]
[NormedSpace 𝕜 X]
{Y : Type u_5}
[NormedAddCommGroup Y]
[NormedSpace 𝕜 Y]
(f : X → Y)
(hf : ContDiff 𝕜 2 f)
:
Differentiable 𝕜 fun (x : X) => fderiv 𝕜 f x
theorem
fderiv_coord_eq_proj_comp
{𝕜 : Type u_3}
[NontriviallyNormedField 𝕜]
{X : Type u_4}
[NormedAddCommGroup X]
[NormedSpace 𝕜 X]
{ι : Type u_1}
[Fintype ι]
{Y' : ι → Type u_2}
[(i : ι) → NormedAddCommGroup (Y' i)]
[(i : ι) → NormedSpace 𝕜 (Y' i)]
{Φ : X → (i : ι) → Y' i}
{x : X}
{i : ι}
(h : DifferentiableAt 𝕜 Φ x)
:
Space.deriv lemmas #
theorem
Space.deriv_add
{M : Type u_1}
{d : ℕ}
{u : Fin d}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f1 f2 : Space d → M)
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
Derivatives on space distiribute over addition.
theorem
Space.deriv_coord_add
{d : ℕ}
{u i : Fin d}
(f1 f2 : Space d → EuclideanSpace ℝ (Fin d))
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
Derivatives on space distiribute coordinate-wise over addition.
theorem
Space.deriv_smul
{M : Type u_1}
{d : ℕ}
{u : Fin d}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : Space d → M)
(k : ℝ)
(hf : Differentiable ℝ f)
:
Scalar multiplication on space derivatives.
theorem
Space.differentiable_fderiv_coord
{i : Fin 3}
(f : Space → EuclideanSpace ℝ (Fin 3))
(hf : ContDiff ℝ 2 f)
:
Differentiable ℝ (fderiv ℝ fun (x : Space) => f x i)
Coordiate functions of fderiv is differentiable.
theorem
Space.deriv_coord_2nd_add
{i u v w : Fin 3}
(f : Space → EuclideanSpace ℝ (Fin 3))
(hf : ContDiff ℝ 2 f)
:
Second derivatives distiribute coordinate-wise over addition (all three components for div).
theorem
Space.deriv_coord_2nd_sub
{u v w : Fin 3}
(f : Space → EuclideanSpace ℝ (Fin 3))
(hf : ContDiff ℝ 2 f)
:
Second derivatives distiribute coordinate-wise over subtraction (two components for curl).
Vector calculus identities #
Addition of ∇ operations #
theorem
Space.grad_add
{d : ℕ}
(f1 f2 : Space d → ℝ)
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
theorem
Space.div_add
(f1 f2 : Space → EuclideanSpace ℝ (Fin 3))
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
theorem
Space.curl_add
(f1 f2 : Space → EuclideanSpace ℝ (Fin 3))
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
Scalar multiplication of ∇ operations #
Linearity of div and curl #
theorem
Space.div_linear_map
{W : Type u_1}
[NormedAddCommGroup W]
[NormedSpace ℝ W]
(f : W → Space → EuclideanSpace ℝ (Fin 3))
(hf : ∀ (w : W), Differentiable ℝ (f w))
(hf' : IsLinearMap ℝ f)
:
IsLinearMap ℝ fun (w : W) => div (f w)
theorem
Space.curl_linear_map
{W : Type u_1}
[NormedAddCommGroup W]
[NormedSpace ℝ W]
(f : W → Space → EuclideanSpace ℝ (Fin 3))
(hf : ∀ (w : W), Differentiable ℝ (f w))
(hf' : IsLinearMap ℝ f)
:
IsLinearMap ℝ fun (w : W) => curl (f w)