General auxiliary lemmas #
theorem
fderiv_pi'
{š : Type u_3}
[NontriviallyNormedField š]
{X : Type u_4}
[NormedAddCommGroup X]
[NormedSpace š X]
{ι : Type u_1}
[Fintype ι]
{Y' : ι ā Type u_2}
[(i : ι) ā NormedAddCommGroup (Y' i)]
[(i : ι) ā NormedSpace š (Y' i)]
{Φ : X ā (i : ι) ā Y' i}
{x : X}
(h : DifferentiableAt š Φ x)
:
theorem
ContDiff.differentiable_fderiv
{š : Type u_3}
[NontriviallyNormedField š]
{X : Type u_4}
[NormedAddCommGroup X]
[NormedSpace š X]
{Y : Type u_5}
[NormedAddCommGroup Y]
[NormedSpace š Y]
(f : X ā Y)
(hf : ContDiff š 2 f)
:
Differentiable š fun (x : X) => fderiv š f x
theorem
fderiv_coord_eq_proj_comp
{š : Type u_3}
[NontriviallyNormedField š]
{X : Type u_4}
[NormedAddCommGroup X]
[NormedSpace š X]
{ι : Type u_1}
[Fintype ι]
{Y' : ι ā Type u_2}
[(i : ι) ā NormedAddCommGroup (Y' i)]
[(i : ι) ā NormedSpace š (Y' i)]
{Φ : X ā (i : ι) ā Y' i}
{x : X}
{i : ι}
(h : DifferentiableAt š Φ x)
:
Space.deriv lemmas #
theorem
Space.deriv_add
{M : Type u_1}
{d : ā}
{u : Fin d}
[NormedAddCommGroup M]
[NormedSpace ā M]
(f1 f2 : Space d ā M)
(hf1 : Differentiable ā f1)
(hf2 : Differentiable ā f2)
:
Derivatives on space distiribute over addition.
theorem
Space.deriv_coord_add
{d : ā}
{u i : Fin d}
(f1 f2 : Space d ā EuclideanSpace ā (Fin d))
(hf1 : Differentiable ā f1)
(hf2 : Differentiable ā f2)
:
Derivatives on space distiribute coordinate-wise over addition.
theorem
Space.deriv_smul
{M : Type u_1}
{d : ā}
{u : Fin d}
[NormedAddCommGroup M]
[NormedSpace ā M]
(f : Space d ā M)
(k : ā)
(hf : Differentiable ā f)
:
Scalar multiplication on space derivatives.
theorem
Space.deriv_coord_smul
{d : ā}
{u i : Fin d}
{x : Space d}
(f : Space d ā EuclideanSpace ā (Fin d))
(k : ā)
(hf : Differentiable ā f)
:
Coordinate-wise scalar multiplication on space derivatives.
theorem
Space.differentiable_fderiv_coord
{i : Fin 3}
(f : Space ā EuclideanSpace ā (Fin 3))
(hf : ContDiff ā 2 f)
:
Differentiable ā (fderiv ā fun (x : Space) => f x i)
Coordiate functions of fderiv is differentiable.
theorem
Space.deriv_coord_2nd_add
{i u v w : Fin 3}
(f : Space ā EuclideanSpace ā (Fin 3))
(hf : ContDiff ā 2 f)
:
Second derivatives distiribute coordinate-wise over addition (all three components for div).
theorem
Space.deriv_coord_2nd_sub
{u v w : Fin 3}
(f : Space ā EuclideanSpace ā (Fin 3))
(hf : ContDiff ā 2 f)
:
Second derivatives distiribute coordinate-wise over subtraction (two components for curl).
Vector calculus identities #
@[simp]
@[simp]
Addition of ā operations #
theorem
Space.grad_add
{d : ā}
(f1 f2 : Space d ā ā)
(hf1 : Differentiable ā f1)
(hf2 : Differentiable ā f2)
:
theorem
Space.div_add
(f1 f2 : Space ā EuclideanSpace ā (Fin 3))
(hf1 : Differentiable ā f1)
(hf2 : Differentiable ā f2)
:
theorem
Space.curl_add
(f1 f2 : Space ā EuclideanSpace ā (Fin 3))
(hf1 : Differentiable ā f1)
(hf2 : Differentiable ā f2)
:
Scalar multiplication of ā operations #
theorem
Space.div_smul
(f : Space ā EuclideanSpace ā (Fin 3))
(k : ā)
(hf : Differentiable ā f)
:
theorem
Space.curl_smul
(f : Space ā EuclideanSpace ā (Fin 3))
(k : ā)
(hf : Differentiable ā f)
:
Linearity of div and curl #
theorem
Space.div_linear_map
{W : Type u_1}
[NormedAddCommGroup W]
[NormedSpace ā W]
(f : W ā Space ā EuclideanSpace ā (Fin 3))
(hf : ā (w : W), Differentiable ā (f w))
(hf' : IsLinearMap ā f)
:
IsLinearMap ā fun (w : W) => div (f w)
theorem
Space.curl_linear_map
{W : Type u_1}
[NormedAddCommGroup W]
[NormedSpace ā W]
(f : W ā Space ā EuclideanSpace ā (Fin 3))
(hf : ā (w : W), Differentiable ā (f w))
(hf' : IsLinearMap ā f)
:
IsLinearMap ā fun (w : W) => curl (f w)