Finiteness of quotient modules #
instance
module_finite_of_liesOver
{A : Type u_1}
{B : Type u_2}
[CommRing A]
[CommRing B]
[Algebra A B]
(P : Ideal B)
(p : Ideal A)
[P.LiesOver p]
[Module.Finite A B]
:
Module.Finite (A ⧸ p) (B ⧸ P)
B ⧸ P is a finite A ⧸ p-module if B is a finite A-module.
instance
algebra_finiteType_of_liesOver
{A : Type u_1}
{B : Type u_2}
[CommRing A]
[CommRing B]
[Algebra A B]
(P : Ideal B)
(p : Ideal A)
[P.LiesOver p]
[Algebra.FiniteType A B]
:
Algebra.FiniteType (A ⧸ p) (B ⧸ P)
B ⧸ P is a finitely generated A ⧸ p-algebra if B is a finitely generated A-algebra.
instance
isNoetherian_of_liesOver
{A : Type u_1}
{B : Type u_2}
[CommRing A]
[CommRing B]
[Algebra A B]
(P : Ideal B)
(p : Ideal A)
[P.LiesOver p]
[IsNoetherian A B]
:
IsNoetherian (A ⧸ p) (B ⧸ P)
B ⧸ P is a Noetherian A ⧸ p-module if B is a Noetherian A-module.
instance
QuotientMapQuotient.isNoetherian
{A : Type u_1}
{B : Type u_2}
[CommRing A]
[CommRing B]
[Algebra A B]
(p : Ideal A)
[IsNoetherian A B]
:
IsNoetherian (A ⧸ p) (B ⧸ Ideal.map (algebraMap A B) p)