Fractional ideals of number fields #
Prove some results on the fractional ideals of number fields.
Main definitions and results #
NumberField.basisOfFractionalIdeal: Aℚ-basis ofKthat spansIoverℤwhereIis a fractional ideal of a number fieldK.NumberField.det_basisOfFractionalIdeal_eq_absNorm: forIa fractional ideal of a number fieldK, the absolute value of the determinant of the base change fromintegralBasistobasisOfFractionalIdeal Iis equal to the norm ofI.
instance
NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
(K : Type u_1)
[Field K]
[NumberField K]
(I : FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)
:
Module.Free ℤ ↥↑I
instance
NumberField.instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
(K : Type u_1)
[Field K]
[NumberField K]
(I : FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)
:
Module.Finite ℤ ↥↑I
instance
NumberField.instIsLocalizedModuleIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmoduleValFractionalIdealNonZeroDivisorsRestrictScalarsSubtype
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)ˣ)
:
IsLocalizedModule (nonZeroDivisors ℤ) (↑ℤ (↑↑I).subtype)
noncomputable def
NumberField.fractionalIdealBasis
(K : Type u_1)
[Field K]
[NumberField K]
(I : FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)
:
Module.Basis (Module.Free.ChooseBasisIndex ℤ ↥↑I) ℤ ↥↑I
A ℤ-basis of a fractional ideal.
Equations
Instances For
noncomputable def
NumberField.basisOfFractionalIdeal
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)ˣ)
:
Module.Basis (Module.Free.ChooseBasisIndex ℤ ↥↑↑I) ℚ K
A ℚ-basis of K that spans I over ℤ, see mem_span_basisOfFractionalIdeal below.
Equations
Instances For
theorem
NumberField.basisOfFractionalIdeal_apply
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)ˣ)
(i : Module.Free.ChooseBasisIndex ℤ ↥↑↑I)
:
theorem
NumberField.mem_span_basisOfFractionalIdeal
(K : Type u_1)
[Field K]
[NumberField K]
{I : (FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)ˣ}
{x : K}
:
theorem
NumberField.fractionalIdeal_rank
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)ˣ)
:
theorem
NumberField.det_basisOfFractionalIdeal_eq_absNorm
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors (RingOfIntegers K)) K)ˣ)
(e : Module.Free.ChooseBasisIndex ℤ (RingOfIntegers K) ≃ Module.Free.ChooseBasisIndex ℤ ↥↑↑I)
:
The absolute value of the determinant of the base change from integralBasis to
basisOfFractionalIdeal I is equal to the norm of I.