PhysLean Documentation

Mathlib.Geometry.Manifold.IsManifold.InteriorBoundary

Interior and boundary of a manifold #

Define the interior and boundary of a manifold.

Main definitions #

Main results #

Tags #

manifold, interior, boundary

TODO #

def ModelWithCorners.IsInteriorPoint {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) :

p ∈ M is an interior point of a manifold M iff its image in the extended chart lies in the interior of the model space.

Equations
Instances For
    def ModelWithCorners.IsBoundaryPoint {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) :

    p ∈ M is a boundary point of a manifold M iff its image in the extended chart lies on the boundary of the model space.

    Equations
    Instances For
      def ModelWithCorners.interior {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] :
      Set M

      The interior of a manifold M is the set of its interior points.

      Equations
      Instances For
        def ModelWithCorners.boundary {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] :
        Set M

        The boundary of a manifold M is the set of its boundary points.

        Equations
        Instances For
          theorem ModelWithCorners.isBoundaryPoint_iff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} :

          Every point is either an interior or a boundary point.

          A manifold decomposes into interior and boundary.

          The interior and boundary of a manifold M are disjoint.

          The boundary is the complement of the interior.

          The interior is the complement of the boundary.

          theorem range_mem_nhds_isInteriorPoint {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} (h : I.IsInteriorPoint x) :
          Set.range I nhds ((extChartAt I x) x)
          class BoundarylessManifold {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] {E : Type u_6} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_7} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_8) [TopologicalSpace M] [ChartedSpace H M] :

          Type class for manifold without boundary. This differs from ModelWithCorners.Boundaryless, which states that the ModelWithCorners maps to the whole model vector space.

          Instances

            Boundaryless ModelWithCorners implies boundaryless manifold.

            The empty manifold is boundaryless.

            If I is boundaryless, M has full interior.

            Boundaryless manifolds have empty boundary.

            M is boundaryless iff its boundary is empty.

            Manifolds with empty boundary are boundaryless.

            Interior and boundary of the product of two manifolds.

            The interior of M × N is the product of the interiors of M and N.

            The boundary of M × N is ∂M × N ∪ (M × ∂N).

            If M is boundaryless, ∂(M×N) = M × ∂N.

            If N is boundaryless, ∂(M×N) = ∂M × N.

            instance ModelWithCorners.BoundarylessManifold.prod {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {N : Type u_7} [TopologicalSpace N] [ChartedSpace H' N] {J : ModelWithCorners 𝕜 E' H'} [BoundarylessManifold I M] [BoundarylessManifold J N] :

            The product of two boundaryless manifolds is boundaryless.

            theorem ModelWithCorners.interiorPoint_inl {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_5} [TopologicalSpace M'] [ChartedSpace H M'] (x : M) (hx : I.IsInteriorPoint x) :
            theorem ModelWithCorners.boundaryPoint_inl {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_5} [TopologicalSpace M'] [ChartedSpace H M'] (x : M) (hx : I.IsBoundaryPoint x) :
            theorem ModelWithCorners.interiorPoint_inr {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_5} [TopologicalSpace M'] [ChartedSpace H M'] (x : M') (hx : I.IsInteriorPoint x) :
            theorem ModelWithCorners.boundaryPoint_inr {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_5} [TopologicalSpace M'] [ChartedSpace H M'] (x : M') (hx : I.IsBoundaryPoint x) :
            theorem ModelWithCorners.isInteriorPoint_disjointUnion_left {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_5} [TopologicalSpace M'] [ChartedSpace H M'] {p : M M'} (hp : I.IsInteriorPoint p) (hleft : p.isLeft = true) :
            theorem ModelWithCorners.isInteriorPoint_disjointUnion_right {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_5} [TopologicalSpace M'] [ChartedSpace H M'] {p : M M'} (hp : I.IsInteriorPoint p) (hright : p.isRight = true) :

            If M and M' are boundaryless, so is their disjoint union M ⊔ M'.