Equivalent conditions for DVR #
In IsDiscreteValuationRing.TFAE, we show that the following are equivalent for a
Noetherian local domain that is not a field (R, m, k):
Ris a discrete valuation ringRis a valuation ringRis a Dedekind domainRis integrally closed with a unique prime idealmis principaldimₖ m/m² = 1- Every nonzero ideal is a power of
m.
Also see tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain for a version without ¬ IsField R.
theorem
exists_maximalIdeal_pow_eq_of_principal
(R : Type u_1)
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
[IsDomain R]
(h' : Submodule.IsPrincipal (IsLocalRing.maximalIdeal R))
(I : Ideal R)
(hI : I ≠ ⊥)
:
∃ (n : ℕ), I = IsLocalRing.maximalIdeal R ^ n
theorem
maximalIdeal_isPrincipal_of_isDedekindDomain
(R : Type u_1)
[CommRing R]
[IsLocalRing R]
[IsDomain R]
[IsDedekindDomain R]
:
theorem
tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain
(R : Type u_1)
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
[IsDomain R]
:
[IsPrincipalIdealRing R, ValuationRing R, IsDedekindDomain R, IsIntegrallyClosed R ∧ ∀ (P : Ideal R), P ≠ ⊥ → P.IsPrime → P = IsLocalRing.maximalIdeal R, Submodule.IsPrincipal (IsLocalRing.maximalIdeal R), Module.finrank (IsLocalRing.ResidueField R) (IsLocalRing.CotangentSpace R) ≤ 1, ∀ (I : Ideal R), I ≠ ⊥ → ∃ (n : ℕ), I = IsLocalRing.maximalIdeal R ^ n].TFAE
Let (R, m, k) be a Noetherian local domain (possibly a field).
The following are equivalent:
0. R is a PID
Ris a valuation ringRis a Dedekind domainRis integrally closed with at most one non-zero prime idealmis principaldimₖ m/m² ≤ 1- Every nonzero ideal is a power of
m.
Also see IsDiscreteValuationRing.TFAE for a version assuming ¬ IsField R.
theorem
IsDiscreteValuationRing.TFAE
(R : Type u_1)
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
[IsDomain R]
(h : ¬IsField R)
:
[IsDiscreteValuationRing R, ValuationRing R, IsDedekindDomain R, IsIntegrallyClosed R ∧ ∃! P : Ideal R, P ≠ ⊥ ∧ P.IsPrime, Submodule.IsPrincipal (IsLocalRing.maximalIdeal R), Module.finrank (IsLocalRing.ResidueField R) (IsLocalRing.CotangentSpace R) = 1, ∀ (I : Ideal R), I ≠ ⊥ → ∃ (n : ℕ), I = IsLocalRing.maximalIdeal R ^ n].TFAE
The following are equivalent for a
Noetherian local domain that is not a field (R, m, k):
0. R is a discrete valuation ring
Ris a valuation ringRis a Dedekind domainRis integrally closed with a unique non-zero prime idealmis principaldimₖ m/m² = 1- Every nonzero ideal is a power of
m.
Also see tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain for a version without ¬ IsField R.
theorem
IsLocalRing.finrank_CotangentSpace_eq_one_iff
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
[IsLocalRing R]
[IsDomain R]
:
theorem
IsLocalRing.finrank_CotangentSpace_eq_one
(R : Type u_1)
[CommRing R]
[IsDomain R]
[IsDiscreteValuationRing R]
:
@[instance 100]
instance
IsDedekindDomain.isPrincipalIdealRing
(R : Type u_1)
[CommRing R]
[IsLocalRing R]
[IsDedekindDomain R]
: