TODO list
This file is created automatically using `TODO ...` commands within PhysLean. Feel free to tackle any of the items here.Classical Mechanics ⚙️
Show 8 TODO items:
TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Basic)Derive the Euler-Lagraange equation for the classical harmonic oscillator from the lagrangian.
TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Basic)Derive the force from the lagrangian of the classical harmonic oscillator
TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Basic)Include damping into the classical harmonic oscillator.
TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)Show uniqueness of the solution for the classical harmonic oscillator.
TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)Implement other initial conditions for the harmonic oscillator.
TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)For the classical harmonic oscillator find the time for which it returns to it’s initial position and velocity.
TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)For the classical harmonic oscillator find the times for which it passes through zero.
TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)For the classical harmonic oscillator find the velocity when it passes through zero.
Condensed Matter 🧊
Show 0 TODO items:
Cosmology 🌌
Show 0 TODO items:
Electromagnetism ⚡
Show 4 TODO items:
TODO Item
(file : PhysLean.Electromagnetism.FieldStrength.Basic)Define the dual field strength.
TODO Item
(file : PhysLean.Electromagnetism.FieldStrength.Basic)Show that the isomorphism between ElectricField d × MagneticField d
and
ElectricField d × MagneticField d
is equivariant with respect to the Lorentz group.
TODO Item
(file : PhysLean.Electromagnetism.MaxwellEquations)Charge density and current desnity should be generalized to signed measures, in such a way that they are still easy to work with and can be integrated with with tensor notation. See here: https://leanprover.zulipchat.com/#narrow/channel/479953-PhysLean/topic/Maxwell’s.20Equations
TODO Item
(file : PhysLean.Electromagnetism.MaxwellEquations)Show that if the charge density is spherically symmetric, then the electric field is also spherically symmetric.
Mathematics ➗
Show 1 TODO items:
TODO Item
(file : PhysLean.Mathematics.LinearMaps)Replace the definitions in this file with Mathlib definitions.
Meta 🏛️
Show 1 TODO items:
TODO Item
(file : PhysLean.Meta.TransverseTactics)Find a way to free the environment env
in transverseTactics
.
This leads to memory problems when using transverseTactics
directly in loops.
Optics 🔍
Show 0 TODO items:
Particles 💥
Show 48 TODO items:
Informal definition
(GeorgiGlashow.inclSM)The homomorphism of the Standard Model gauge group into the Georgi-Glashow gauge group, i.e.,
the group homomorphism SU(3) × SU(2) × U(1) → SU(5)
taking (h, g, α)
to
blockdiag (α ^ 3 g, α ^ (-2) h)
.
See page 34 of https://math.ucr.edu/home/baez/guts.pdf
Informal Lemma
(GeorgiGlashow.inclSM_ker)The kernel of the map inclSM
is equal to the subgroup StandardModel.gaugeGroupℤ₆SubGroup
.
See page 34 of https://math.ucr.edu/home/baez/guts.pdf
Informal definition
(GeorgiGlashow.GaugeGroupI)The gauge group of the Georgi-Glashow model, i.e., SU(5)
.
Informal definition
(GeorgiGlashow.embedSMℤ₆)The group embedding from StandardModel.GaugeGroupℤ₆
to GaugeGroupI
induced by inclSM
by
quotienting by the kernel inclSM_ker
.
Informal definition
(PatiSalam.gaugeGroupISpinEquiv)The equivalence between GaugeGroupI
and Spin(6) × Spin(4)
.
Informal definition
(PatiSalam.GaugeGroupℤ₂)The gauge group of the Pati-Salam model with a ℤ₂ quotient, i.e., the quotient of GaugeGroupI
by the ℤ₂-subgroup gaugeGroupℤ₂SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
Informal definition
(PatiSalam.gaugeGroupℤ₂SubGroup)The ℤ₂-subgroup of the un-quotiented gauge group which acts trivially on all particles in the
standard model, i.e., the ℤ₂-subgroup of GaugeGroupI
with the non-trivial element (-1, -1, -1)
.
See https://math.ucr.edu/home/baez/guts.pdf
Informal definition
(PatiSalam.GaugeGroupI)The gauge group of the Pati-Salam model (unquotiented by ℤ₂), i.e., SU(4) × SU(2) × SU(2)
.
Informal definition
(PatiSalam.inclSM)The homomorphism of the Standard Model gauge group into the Pati-Salam gauge group, i.e., the
group homomorphism SU(3) × SU(2) × U(1) → SU(4) × SU(2) × SU(2)
taking (h, g, α)
to
(blockdiag (α h, α ^ (-3)), g, diag (α ^ 3, α ^(-3))
.
See page 54 of https://math.ucr.edu/home/baez/guts.pdf
Informal Lemma
(PatiSalam.inclSM_ker)The kernel of the map inclSM
is equal to the subgroup StandardModel.gaugeGroupℤ₃SubGroup
.
See footnote 10 of https://arxiv.org/pdf/2201.07245
Informal definition
(PatiSalam.embedSMℤ₃)The group embedding from StandardModel.GaugeGroupℤ₃
to GaugeGroupI
induced by inclSM
by
quotienting by the kernel inclSM_ker
.
Informal Lemma
(PatiSalam.sm_ℤ₆_factor_through_gaugeGroupℤ₂SubGroup)The group StandardModel.gaugeGroupℤ₆SubGroup
under the homomorphism embedSM
factors through
the subgroup gaugeGroupℤ₂SubGroup
.
Informal definition
(PatiSalam.embedSMℤ₆Toℤ₂)The group homomorphism from StandardModel.GaugeGroupℤ₆
to GaugeGroupℤ₂
induced by embedSM
.
Informal definition
(Spin10Model.inclGeorgiGlashow)The inclusion of the Georgi-Glashow gauge group into Spin(10), i.e., the Lie group homomorphism
from SU(n) → Spin(2n)
discussed on page 46 of https://math.ucr.edu/home/baez/guts.pdf for n = 5
.
Informal definition
(Spin10Model.inclSMThruGeorgiGlashow)The inclusion of the Standard Model gauge group into Spin(10), i.e., the composition of
inclGeorgiGlashow
and GeorgiGlashow.inclSM
.
Informal definition
(Spin10Model.inclPatiSalam)The inclusion of the Pati-Salam gauge group into Spin(10), i.e., the lift of the embedding
SO(6) × SO(4) → SO(10)
to universal covers, giving a homomorphism Spin(6) × Spin(4) → Spin(10)
.
Precomposed with the isomorphism, PatiSalam.gaugeGroupISpinEquiv
, between SU(4) × SU(2) × SU(2)
and Spin(6) × Spin(4)
.
See page 56 of https://math.ucr.edu/home/baez/guts.pdf
Informal Lemma
(Spin10Model.inclSM_eq_inclSMThruGeorgiGlashow)The inclusion inclSM
is equal to the inclusion inclSMThruGeorgiGlashow
.
Informal definition
(Spin10Model.inclSM)The inclusion of the Standard Model gauge group into Spin(10), i.e., the composition of
embedPatiSalam
and PatiSalam.inclSM
.
See page 56 of https://math.ucr.edu/home/baez/guts.pdf
Informal definition
(Spin10Model.GaugeGroupI)The gauge group of the Spin(10) model, i.e., the group Spin(10)
.
TODO Item
(file : PhysLean.Particles.BeyondTheStandardModel.TwoHDM.Basic)Prove bounded properties of the 2HDM potential. See e.g. https://inspirehep.net/literature/201299 and https://arxiv.org/pdf/hep-ph/0605184.
TODO Item
(file : PhysLean.Particles.BeyondTheStandardModel.TwoHDM.Basic)Within the definition of the 2HDM potential. The structure Potential
should be
renamed to TwoHDM and moved out of the TwoHDM namespace.
Then toFun
should be renamed to potential
.
Informal Lemma
(TwoHDM.prodMatrix_to_higgsField)Given any smooth map f
from spacetime to 2-by-2 complex matrices landing on positive
semi-definite matrices, there exist smooth Higgs fields Φ1
and Φ2
such that f
is equal to
prodMatrix Φ1 Φ2
.
See https://arxiv.org/pdf/hep-ph/0605184
Informal Lemma
(TwoHDM.prodMatrix_invariant)The map prodMatrix
is invariant under the simultaneous action of gaugeAction
on the two
Higgs fields.
Informal Lemma
(StandardModel.gaugeGroup_lie)For every q
in GaugeGroupQuot
the group GaugeGroup q
is a Lie group.
TODO Item
(file : PhysLean.Particles.StandardModel.Basic)Redefine the gauge group as a quotient of SU(3) x SU(2) x U(1) by a subgroup of ℤ₆.
Informal definition
(StandardModel.GaugeGroupℤ₆)The smallest possible gauge group of the Standard Model, i.e., the quotient of GaugeGroupI
by
the ℤ₆-subgroup gaugeGroupℤ₆SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
Informal definition
(StandardModel.GaugeGroup)The (global) gauge group of the Standard Model given a choice of quotient, i.e., the map from
GaugeGroupQuot
to Type
which gives the gauge group of the Standard Model for a given choice of
quotient.
See https://math.ucr.edu/home/baez/guts.pdf
Informal definition
(StandardModel.GaugeGroupℤ₃)The gauge group of the Standard Model with a ℤ₃-quotient, i.e., the quotient of GaugeGroupI
by
the ℤ₃-subgroup gaugeGroupℤ₃SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
Informal Lemma
(StandardModel.gaugeGroupI_lie)The gauge group GaugeGroupI
is a Lie group.
Informal definition
(StandardModel.gaugeTransformI)A global section of gaugeBundleI
.
Informal definition
(StandardModel.gaugeBundleI)The trivial principal bundle over SpaceTime with structure group GaugeGroupI
.
Informal definition
(StandardModel.gaugeGroupℤ₂SubGroup)The ℤ₂subgroup of the un-quotiented gauge group which acts trivially on all particles in the
standard model, i.e., the ℤ₂-subgroup of GaugeGroupI
derived from the ℤ₂ subgroup of
gaugeGroupℤ₆SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
Informal definition
(StandardModel.gaugeGroupℤ₃SubGroup)The ℤ₃-subgroup of the un-quotiented gauge group which acts trivially on all particles in the
standard model, i.e., the ℤ₃-subgroup of GaugeGroupI
derived from the ℤ₃ subgroup of
gaugeGroupℤ₆SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
Informal definition
(StandardModel.gaugeGroupℤ₆SubGroup)The subgroup of the un-quotiented gauge group which acts trivially on all particles in the
standard model, i.e., the ℤ₆-subgroup of GaugeGroupI
with elements (α^2 * I₃, α^(-3) * I₂, α)
,
where α
is a sixth complex root of unity.
See https://math.ucr.edu/home/baez/guts.pdf
Informal definition
(StandardModel.GaugeGroupℤ₂)The gauge group of the Standard Model with a ℤ₂ quotient, i.e., the quotient of GaugeGroupI
by
the ℤ₂-subgroup gaugeGroupℤ₂SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.Basic)Make HiggsBundle
an associated bundle.
Informal Lemma
(StandardModel.HiggsField.zero_is_zero_section)The zero Higgs field is the zero section of the Higgs bundle, i.e., the HiggsField zero
defined by ofReal 0
is the constant zero-section of the bundle HiggsBundle
.
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.GaugeAction)Prove invariance of potential under global gauge action.
Informal Lemma
(StandardModel.HiggsVec.guage_orbit)There exists a g
in GaugeGroupI
such that rep g φ = φ'
iff ‖φ‖ = ‖φ'‖
.
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.GaugeAction)Prove ⟪φ1, φ2⟫_H
invariant under the global gauge action. (norm_map_of_mem_unitary)
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.GaugeAction)Currently this only contains the action of the global gauge group. Generalize to include the full action of the gauge group.
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.GaugeAction)Define the global gauge action on HiggsField.
Informal definition
(StandardModel.HiggsField.gaugeAction)The action of gaugeTransformI
on HiggsField
acting pointwise through HiggsVec.rep
.
Informal Lemma
(StandardModel.HiggsVec.stability_group)The subgroup of gaugeGroup := SU(3) × SU(2) × U(1)
which preserves every HiggsVec
by the
action of StandardModel.HiggsVec.rep
is given by SU(3) × ℤ₆
where ℤ₆
is the subgroup of
SU(2) × U(1)
with elements (α^(-3) * I₂, α)
where α
is a sixth root of unity.
Informal Lemma
(StandardModel.HiggsField.guage_orbit)There exists a g
in gaugeTransformI
such that gaugeAction g φ = φ'
iff
φ(x)^† φ(x) = φ'(x)^† φ'(x)
.
Informal Lemma
(StandardModel.HiggsVec.stability_group_single)The Higgs boson breaks electroweak symmetry down to the electromagnetic force, i.e., the
stability group of the action of rep
on ![0, Complex.ofReal ‖φ‖]
, for non-zero ‖φ‖
, is the
SU(3) × U(1)
subgroup of gaugeGroup := SU(3) × SU(2) × U(1)
with the embedding given by
(g, e^{i θ}) ↦ (g, diag (e ^ {3 * i θ}, e ^ {- 3 * i θ}), e^{i θ})
.
Informal Lemma
(StandardModel.HiggsField.gauge_orbit_surject)For every smooth map f
from SpaceTime
to ℝ
such that f
is positive semidefinite, there
exists a Higgs field φ
such that f = φ^† φ
.
Informal Lemma
(StandardModel.HiggsField.Potential.isBounded_iff_of_𝓵_zero)When there is no quartic coupling, the potential is bounded iff the mass squared is
non-positive, i.e., for P : Potential
then P.IsBounded
iff P.μ2 ≤ 0
. That is to say
- P.μ2 * ‖φ‖_H^2 x
is bounded below iff P.μ2 ≤ 0
.
QFT 🌊
Show 7 TODO items:
TODO Item
(file : PhysLean.QFT.AnomalyCancellation.Basic)Anomaly cancellation conditions can be derived formally from the gauge group and fermionic representations using e.g. topological invariants. Include such a definition.
TODO Item
(file : PhysLean.QFT.AnomalyCancellation.Basic)Anomaly cancellation conditions can be defined using algebraic varieties. Link such an approach to the approach here.
TODO Item
(file : PhysLean.QFT.AnomalyCancellation.PureU1.BasisLinear)The definition of coordinateMap
here may be improved by replacing
Finsupp.equivFunOnFinite
with Finsupp.linearEquivFunOnFinite
. Investigate this.
TODO Item
(file : PhysLean.QFT.AnomalyCancellation.PureU1.Even.BasisLinear)Replace the definition of join
with a Mathlib definition, most likely Sum.elim
.
TODO Item
(file : PhysLean.QFT.AnomalyCancellation.PureU1.Odd.BasisLinear)Replace the definition of join
with a Mathlib definition, most likely Sum.elim
.
TODO Item
(file : PhysLean.QFT.AnomalyCancellation.PureU1.Permutations)Remove pairSwap
, and use the Mathlib defined function Equiv.swap
instead.
TODO Item
(file : PhysLean.QFT.PerturbationTheory.FieldOpFreeAlgebra.NormalOrder)Split the following two lemmas up into smaller parts.
Quantum Mechanics ⚛️
Show 2 TODO items:
TODO Item
(file : PhysLean.QuantumMechanics.FiniteTarget.Basic)Define a smooth structure on FiniteTarget
.
TODO Item
(file : PhysLean.QuantumMechanics.OneDimension.HarmonicOscillator.Basic)The momentum operator should be moved to a more general file.
Relativity ⏳
Show 36 TODO items:
TODO Item
(file : PhysLean.Relativity.Lorentz.Algebra.Basis)Define the standard basis of the Lorentz algebra.
TODO Item
(file : PhysLean.Relativity.Lorentz.Bispinors.Basic)To increase the speed of these files (vecNodeE complexLorentzTensor .up p).tensor | μ
is
written out expliclity. Notation should be introduced so that we can just write p | μ
or
similar without slowing things down.
This can be done by redefining bispinors in terms of actual tensors.
Informal Lemma
(complexLorentzTensor.coBispinorUp_eq_metric_contr_coBispinorDown){coBispinorUp p | α β = εL | α α' ⊗ εR | β β'⊗ coBispinorDown p | α' β' }ᵀ
.
proof: expand coBispinorDown
and use fact that metrics contract to the identity.
Informal Lemma
(complexLorentzTensor.contrBispinorUp_eq_metric_contr_contrBispinorDown){contrBispinorUp p | α β = εL | α α' ⊗ εR | β β'⊗ contrBispinorDown p | α' β' }ᵀ
.
Proof: expand contrBispinorDown
and use fact that metrics contract to the identity.
TODO Item
(file : PhysLean.Relativity.Lorentz.ComplexTensor.Basic)The lemma repDim_τ
should hold for any Tensor Species not just complex Lorentz
tensors.
TODO Item
(file : PhysLean.Relativity.Lorentz.ComplexTensor.Basis)Replace basisVector in this file with TensorSpecies.tensorBasis. All of the results here should be generalized to TensorSpecies.tensorBasis.
TODO Item
(file : PhysLean.Relativity.Lorentz.Group.Basic)Define the Lie group structure on the Lorentz group.
TODO Item
(file : PhysLean.Relativity.Lorentz.Group.Boosts.Generalized)Show that generalised boosts are in the restricted Lorentz group.
TODO Item
(file : PhysLean.Relativity.Lorentz.Group.Boosts.Generalized)Make toLorentz
the definition of a generalised boost. This will involve
refactoring this file.
TODO Item
(file : PhysLean.Relativity.Lorentz.Group.Orthochronous)Prove topological properties of the Orthochronous Lorentz Group.
TODO Item
(file : PhysLean.Relativity.Lorentz.Group.Restricted)Add definition of the restricted Lorentz group.
TODO Item
(file : PhysLean.Relativity.Lorentz.Group.Restricted)Prove restricted Lorentz group equivalent to connected component of identity of the Lorentz group.
TODO Item
(file : PhysLean.Relativity.Lorentz.Group.Restricted)Prove that every member of the restricted Lorentz group is combiniation of a boost and a rotation.
Informal definition
(LorentzGroup.Restricted)The subgroup of the Lorentz group consisting of elements which are proper and orthochronous.
TODO Item
(file : PhysLean.Relativity.Lorentz.Group.Rotations)Generalize the inclusion of rotations into LorentzGroup to arbitrary dimension.
TODO Item
(file : PhysLean.Relativity.Lorentz.RealTensor.Derivative)Prove that the derivative obeys the following equivariant
property with respect to the Lorentz group.
For a function f : ℝT(d, cm) → ℝT(d, cn)
then
Λ • (∂ f (x)) = ∂ (fun x => Λ • f (Λ⁻¹ • x)) (Λ • x)
.
Informal Lemma
(Lorentz.SL2C.toRestrictedLorentzGroup)The homomorphism from SL(2, ℂ)
to the restricted Lorentz group.
TODO Item
(file : PhysLean.Relativity.Lorentz.SL2C.Basic)Define homomorphism from SL(2, ℂ)
to the restricted Lorentz group.
Informal Lemma
(Fermion.rightHandedWeylAltEquiv_equivariant)The linear equivalence rightHandedWeylAltEquiv
is equivariant with respect to the action of
SL(2,C)
on rightHandedWeyl
and altRightHandedWeyl
.
Informal definition
(Fermion.rightHandedWeylAltEquiv)The linear equivalence between rightHandedWeyl
and altRightHandedWeyl
given by multiplying
an element of rightHandedWeyl
by the matrix εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]
.
TODO Item
(file : PhysLean.Relativity.SpaceTime.Basic)SpaceTime should be refactored into a structure, or similar, to prevent casting.
TODO Item
(file : PhysLean.Relativity.SpaceTime.CliffordAlgebra)Prove algebra generated by gamma matrices is isomorphic to Clifford algebra.
TODO Item
(file : PhysLean.Relativity.Special.TwinParadox.Basic)Find the conditions for which the age gap for the twin paradox is zero.
TODO Item
(file : PhysLean.Relativity.Tensors.OverColor.Discrete)Find a better place for this.
TODO Item
(file : PhysLean.Relativity.Tensors.OverColor.Iso)In equivToHomEq the tactic try {simp; decide}; try decide
can probably be made more
efficent.
Informal definition
(IndexNotation.OverColor.forgetLift)The natural isomorphism between lift (C := C) ⋙ forget
and
Functor.id (Discrete C ⥤ Rep k G)
.
Informal Lemma
(TensorSpecies.contractSelfField_tensorTree)The contraction ⟪ψ, φ⟫ₜₛ
is related to the tensor tree
{ψ | μ ⊗ (S.dualRepIsoDiscrete c).hom φ | μ}ᵀ
.
Informal Lemma
(TensorSpecies.contractSelfField_non_degenerate)The contraction of two vectors of the same color is non-degenerate, i.e., ⟪ψ, φ⟫ₜₛ = 0
for all
φ
implies ψ = 0
.
Proof: the basic idea is that being degenerate contradicts the assumption of having a unit in the tensor species.
Informal Lemma
(TensorSpecies.dualRepIso_unitTensor_fst)Acting with dualRepIso
on the fst component of a unitTensor
returns a metric.
Informal Lemma
(TensorSpecies.dualRepIso_metricTensor_snd)Acting with dualRepIso
on the snd component of a metricTensor
returns a unitTensor.
Informal definition
(TensorSpecies.dualRepIso)Given a i : Fin n
the isomorphism between S.F.obj (OverColor.mk c)
and
S.F.obj (OverColor.mk (Function.update c i (S.τ (c i))))
induced by dualRepIsoDiscrete
acting on
the i
-th component of the color.
Informal Lemma
(TensorSpecies.dualRepIso_unitTensor_snd)Acting with dualRepIso
on the snd component of a unitTensor
returns a metric.
Informal Lemma
(TensorSpecies.dualRepIso_metricTensor_fst)Acting with dualRepIso
on the fst component of a metricTensor
returns a unitTensor.
TODO Item
(file : PhysLean.Relativity.Tensors.Tree.Basic)Fill in the other relationships between tensor trees and tensor basis.
Informal Lemma
(TensorTree.constVecNode_eq_vecNode)A constVecNode
has equal tensor to the vecNode
with the map evaluated at 1.
Informal Lemma
(TensorTree.constTwoNode_eq_twoNode)A constTwoNode
has equal tensor to the twoNode
with the map evaluated at 1.