PhysLean Documentation

Mathlib.CategoryTheory.Monoidal.Types.Basic

The category of types is a (symmetric) monoidal category #

@[simp]
theorem CategoryTheory.tensor_apply {W X Y Z : Type u} (f : W X) (g : Y Z) (p : MonoidalCategoryStruct.tensorObj W Y) :
@[simp]
theorem CategoryTheory.associator_hom_apply {X Y Z : Type u} {x : X} {y : Y} {z : Z} :
@[simp]
theorem CategoryTheory.associator_inv_apply {X Y Z : Type u} {x : X} {y : Y} {z : Z} :
@[simp]
theorem CategoryTheory.braiding_hom_apply {X Y : Type u} {x : X} {y : Y} :
(β_ X Y).hom (x, y) = (y, x)
@[simp]
theorem CategoryTheory.braiding_inv_apply {X Y : Type u} {x : X} {y : Y} :
(β_ X Y).inv (y, x) = (x, y)
@[simp]
theorem CategoryTheory.ChosenFiniteProducts.lift_apply {X Y Z : Type u} {f : X Y} {g : X Z} {x : X} :
lift f g x = (f x, g x)
noncomputable def CategoryTheory.MonoidalFunctor.mapPi {C : Type u_1} [Category.{u_3, u_1} C] [MonoidalCategory C] (F : Functor (Type u_2) C) [F.Monoidal] (n : ) (β : Type u_2) :
F.obj (Fin (n + 1)β) MonoidalCategoryStruct.tensorObj (F.obj β) (F.obj (Fin nβ))

If F is a monoidal functor out of Type, it takes the (n+1)st cartesian power of a type to the image of that type, tensored with the image of the nth cartesian power.

Equations
Instances For